系列讲座

首页 > 系列讲座 > 正文

系列讲座

Treatment Allocations Based on Multi-Armed Bandit Strategies

时间:2018-04-19

Statistics Seminar2018-04


Topic: Treatment Allocations Based on Multi-Armed Bandit Strategies

Speaker: Yuhong Yang, School of Statistics, University of Minnesota

Time: Thursday, April 19,14:00-15:00

Place: Room 217, Guanghua Building 2


Abstract:

In practice of medicine, multiple treatments are often available to treat individual patients. The task of identifying the best treatment for a specific patient is very challenging due to patient inhomogeneity. Multi-armed bandit with covariates provides a framework for designing effective treatment allocation rules in a way that integrates the learning from experimentation with maximizing the benefits to the patients along the process.


In this talk, we present new strategies to achieve asymptotically efficient or minimax optimal treatment allocations. Since many nonparametric and parametric methods in supervised learning may be applied to estimating the mean treatment outcome functions (in terms of the covariates) but guidance on how to choose among them is generally unavailable, we propose a model combining allocation strategy for adaptive performance and show its strong consistency. When the mean treatment outcome functions are smooth, rates of convergence can be studied to quantify the effectiveness of a treatment allocation rule in terms of the overall benefits the patients have received. A multi-stage randomized allocation with arm elimination algorithm is proposed to combine the flexibility in treatment outcome function modeling and a theoretical guarantee of the overall treatment benefits. Numerical results are given to demonstrate the performance of the new strategies.


The talk is based on joint work with Wei Qian.


Introduction:

Yuhong Yang received his Ph.D from Yale in statistics in 1996. He then joined the Department of Statistics at Iowa State University and moved to the University of Minnesota in 2004. He has been a full professor there since 2007. His research interests include model selection, multi-armed bandit problems, forecasting, high-dimensional data analysis, and machine learning. He has published in journals in several fields, including Annals of Statistics, IEEE Transaction on Information Theory, Journal of Econometrics, Journal of Approximation Theory, Journal of Machine Learning Research, and International Journal of Forecasting. He is a fellow of Institute of Mathematical Statistics.


Your participation is warmly welcomed!


010-62747206

北京大学光华管理学院2号楼

©2017 北京大学光华管理学院 版权所有 京ICP备05065075-1